Comprehensive Oilgae Report

A detailed report on all aspects of the algae fuel value chain, the Comprehensive Oilgae Report will be of immense help to those who are on the threshold of investing in algae biofuels. More ››

Algae-based Wastewater Treatment

Compiled by a diverse team of experts, with experience in scientific and industrial fields, the Comprehensive Report for Wastewater Treatment Using Algae is the first report that provides in-depth analysis and insights on this important field. It uses innumerable data and information from a wide variety of expert sources and market studies, and distills these inputs and data into intelligence and a roadmap that you can use. More ››

Comprehensive Guide for Algae-based Carbon Capture

A Comprehensive Guide for Entrepreneurs and Businesses Who Wish to get a Basic Understanding of the Business Opportunities and Industry Dynamics of the Algae-based CO2. More ››


Comprehensive Report on Attractive Algae Product Opportunities

This is for entrepreneurs and businesses who wish to get a basic understanding of the algae fuel business and industrThe report provides an overview of the wide range of non-fuel applications of algae – both current and future prospects. It will provide entrepreneurs with an idea of how to derive more benefits from their algal energy ventures. The report provides detailed case studies, success stories and factoids of companies that have been involved in the algae products venture. More ››

Comprehensive Castor Oil Report

There is no other comprehensive report available for castor oil anywhere in the world. This is the first of its kind, and currently, the only one. More ››

Bioplastics Market & Strategy Advisor

Bioplastics Market & Strategy Advisor, published by the Bioplastics Guide, is a unique guiding framework for businesses and entrepreneurs to chart a way forward provides a critical analysis of the status, opportunities & trends of the global bioplastics sector. More ››

Algae - Food and Feed

Edible Sea-weeds 

Hydrocolloids

Animal and Fish Feed

Algae-Useful Substances

Pigments

PUFAs

Vitamins

Anti-oxidants


Algae for Pollution Control

Other Novel Applications

Geothermal Energy – Production, Applications Reference, Directory - Reference & Resources


Nature gave us oil from algae; perhaps we should try Nature’s way again

Content derived from Wikipedia article on Geothermal power

Geothermal power is the use of geothermal heat to generate electricity. It is often referred to as a form of renewable energy, but because the heat at any location can eventually be depleted it is by definition not strictly renewable. Geothermal comes from the Greek words geo, meaning earth, and therme, meaning heat. Geothermal literally means "earth heat". Geothermal-generated electricity was first produced at Larderello, Italy, in 1904.

Capacity

By the end of 2005 worldwide use of Geothermal Energy for electricity had reached 9.3 GWs, with an additional 28 GW used directly for heating. If heat recovered by ground source heat pumps is included, the non-electric use of geothermal energy is estimated at more than 100 GWt (gigawatts of thermal power) and is used commercially in over 70 countries.

During 2005 contracts were placed for an additional 0.5 GW of capacity in the United States, while there were also plants under construction in 11 other countries. 

Don't Miss It! Get Latest from Energy Delivered in Your Mailbox. Free!

Resources

Estimates of exploitable worldwide geothermal energy resources vary considerably. According to a 1999 study, it was thought that this might amount to between 65 and 138 GW of electrical generation capacity 'using enhanced technology'.

A 2006 report by MIT that took into account the use of Enhanced Geothermal Systems (EGS) concluded that it would be affordable to generate 100 GWe (gigawatts of electricity) or more by 2050, just in the United States, for a maximum investment of 1 billion US dollars in research and development over 15 years.

The MIT report calculated the world's total EGS resources to be over 13,000 ZJ, of which over 200 ZJ would be extractable, with the potential to increase this to over 2,000 ZJ with technology improvements - sufficient to provide all the world's energy needs for several millennia.

Electrical generation

Three types of power plants are used to generate power from geothermal energy: dry steam, flash, and binary. Dry steam plants take steam out of fractures in the ground and use it to directly drive a turbine that spins a generator. Flash plants take hot water, usually at temperatures over 200°C, out of the ground, and allows it to boil as it rises to the surface then separates the steam phase in steam/water separators and then runs the steam through a turbine. In binary plants, the hot water flows through heat exchangers, boiling an organic fluid that spins the turbine. The condensed steam and remaining geothermal fluid from all three types of plants are injected back into the hot rock to pick up more heat. This is why geothermal energy is viewed as sustainable. The heat of the earth is so vast that there is no way to remove more than a small fraction even if most of the world's energy needs came from geothermal sources.

Distribution

The largest dry steam field in the world is The Geysers, about 90 miles (145 km) north of San Francisco. The Geysers began in 1960 which has 1360 MW of installed capacity and produces about 1000 MW net. Calpine Corporation now owns 19 of the 21 plants in The Geysers and is currently the United States' largest producer of renewable geothermal energy. The other two plants are owned jointly by the Northern California Power Agency and Santa Clara Electric. Since the activities of one geothermal plant affects those nearby, the consolidation plant ownership at The Geysers has been beneficial because the plants operate cooperatively instead of in their own short-term interest. The Geysers is now recharged by injecting treated sewage effluent from the City of Santa Rosa and the Lake County sewage treatment plant. This sewage effluent used to be dumped into rivers and streams and is now piped to the geothermal field where it replenishes the steam produced for power generation.

 Another major geothermal area is located in south central California, on the southeast side of the Salton Sea, near the cities of Niland and Calipatria, California. As of 2001, there were 15 geothermal plants producing electricity in the area. CalEnergy owns about half of them and the rest are owned by various companies. Combined the plants produce about 570 megawatts.

The Basin and Range geologic province in Nevada, southeastern Oregon, southwestern Idaho, Arizona and western Utah is now an area of rapid geothermal development. Several small power plants were built during the late 1980s during times of high power prices. Rising energy costs have spurred new development. Plants in Nevada at Steamboat near Reno, Brady/Desert Peak, Dixie Valley, Soda Lake, Stillwater and Beowawe now produce about 235 MW. New projects are under development across the state.

Geothermal power is very cost-effective in the Rift area of Africa. Kenya's KenGen has built two plants, Olkaria I (45 MW) and Olkaria II (65 MW), with a third private plant Olkaria III (48 MW) run by geothermal specialist Ormat. Plans are to increase production capacity by another 576 MW by 2017, covering 25% of Kenya's electricity needs, and correspondingly reducing dependency on imported oil.

Geothermal power is generated in over 20 countries around the world including Iceland (producing 17% of its electricity from geothermal sources), the United States, Italy, France, New Zealand, Mexico, Nicaragua, Costa Rica, Russia, the Philippines (production output of 1931MW (2nd to US, 27% of electricity), Indonesia, the People's Republic of China and Japan. Canada's government (which officially notes some 30,000 earth-heat installations for providing space heating to Canadian residential and commercial buildings) reports a test geothermal-electrical site in the Meager Mountain–Pebble Creek area of British Columbia, where a 100 MW facility could be developed.

Desalination

Douglas Firestone began working with evaporation/condensation air loop desalination about 1998 and proved that geothermal waters could be used as process water to produce potable water in 2001. In 2003 Professor Ronald A. Newcomb, now at San Diego State University Center for Advanced Water Technologies began to work with Firestone to enhance the process of using geothermal energy for the purpose of desalination. Geothermal Energy is a primary energy source.

In 2005 some testing was done in the fifth prototype of a device called the “Delta T” a closed air loop, atmospheric pressure, evaporation condensation loop geothermally powered desalination device. The device used filtered sea water from Scripps Institute of Oceanography and reduced the salt concentration from 35,000 ppm to 51 ppm w/w. [3]

Water injection

In some locations, the natural supply of water producing steam from the hot underground magma deposits has been exhausted and processed waste water is injected to replenish the supply. Most geothermal fields have more fluid recharge than heat, so re-injection can cool the resource, unless it is carefully managed.

Notes

The United States is the country with the greatest geothermal energy production.[4]

Chevron Corporation is the world's largest producer of geothermal energy.

Geothermal energy is a renewable resource along with hydroelectric power, wind power, and Solar energy.

Related topics @ Wikipedia

Look up geothermal in

Wiktionary, the free dictionary.Hot-dry-rock geothermal power

Geothermal exchange heat pump

Geothermal desalination

Geothermal power in Iceland

Category:Geothermal power and heating plants

World energy resources and consumption

 References

^ Geothermal Energy Association - Washington, DC (http). Retrieved on 2007-02-07.

^ Aqua Genesis Ltd - Delta T - Testing Information (accessed 30 March 2006)

http://en.wikipedia.org/wiki/Geothermal_power

 Notes:

  • We’d like to regularly add more useful content and web resources to Oilgae.com. Should you know of any good web resource for Biodiesel production from algae, do let us know by sending a note to [narsi]@[esource].[in] (remove [ ] for the email address). Many thanks for your patience.
  • All content at Oilgae are available for reproduction and usage under the GNU Free Documentation License. Please see explanation at the end of this page for more details.

Add Links/Submit Links: Do you have a web resource that belongs to here? If you have a web site that you wish to include in this page, do let us know the details by sending a note about your URL to [narsi]@[esource].[in] to add URL (pl remove the [ ] to get my email address!). We’ll quickly review the web site, and if found relevant, add it to the database. Thanks!

Oilgae.com content is available under GNU Free Documentation License: All content at Oilgae.com is licensed under the GNU Free Documentation (GFDL). Put simply, under this license, anyone is free to copy & use any amount of content @ Oilgae.com, make changes to it and use it in any way they wish, as long as they also allow the same rights to anyone else for this content and give credits to Oilgae by giving a link to the specific page/s from where the content was taken (a mention of Oilgae.com and a brief description about the site is enough for offline usage). Put not so simply, see the Oilgae.com GNU Free Documentation License .

This page uses material from the Wikipedia article Geothermal power

About Oilgae - Oilgae - Oil & Biodiesel from Algae has a focus on Biodiesel production from algae while also discussing alternative energy in general. Algae present an exciting possibility as a feedstock for biodiesel, and when you realise that oil was originally formed from algae - among others - you think "Hey! Why not oil again from algae!"

To facilitate exploration of oil production from algae as well as exploration of other alternative energy avenues, Oilgae provides web links, directory, and related resources for algae-based biofuels / biodiesel along with inputs on new inventions, discoveries & breakthroughs in other alternative energy domains such as solar, Wind nuclear, Hydro geothermal, hydrogen & fuel cells, gravitational, geothemal, human-powered, ocean & Wave / tidal energy.